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Introduction
Energy Demand and Supply




Il Share of Nuclear Energy

* Nuclear energy accounts for 8-9% of the national energy
supply (U.S. DOE/EIA 2023)

M Lawrence Livermore

Estimated U.S. Energy Consumption in 2023: 93.6 Quads 2 National Laboratory
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...and makes up just
3.4% of total industrial
energy demand.

The industrial sector

consumes 35% of the
nation's total energy

demand.

The heat demand from the
industrial sector relies
mostly on fossil fuels.

Nuclear energy is solely used
as an electricity provider for
the industrial sector, but
electrical energy accounts for
only 13.4% of the total energy
demand from industry.
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- Expected US Energy Demand Growth

U.S. energy consumption increases to 2050, and electricity plays an

. . increasingly larger role
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Il Electric potential: Datacenter Power Hunger
BOth, AI and non_AI WorkloadS Estimated global data center capacity demand, ‘continued momentum’ scenario, gigawatts
will be key drivers of global

datacenter capacity demand
growth through 2030.
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Variable Renewable Generators in Electricity Markets
Need for grid stability and reliability, arbitrage potential

Example California's duck curve is getting deeper P

CAISO lowest net load day each spring (March—May, 2015-2023), gigawatts I
Impact on demand of solar | s d pring ( y ). 9ig eia

generation assets

- Peak generation # peak 20

demand 15

* Requires additional
components and
approaches to maintain s
stable, reliable grid
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° W|th|n day, but Data source: California Independent System Operator (CAISO)
also seasonal Figure developed by INL.
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Thermal potential: Energy use across all U.S. manufacturing

Manufacturing Energy and Carbon Footprint

Onsite Energy Use: 14,744 TBtu
Onsite Emissions:

Sector: All Manufacturing (NAICS 31-33)
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Prepared for the U.5. Dapartment of Energy, Advanced Manufacturing Office by Enargatics

Total Energy = 432 GWh
(Process and Non-process)

> 32 % steam

» 22% electrical power

Manufacturing Energy and Carbon Footprint - Sector:
Petroleum Refining (NAICS 31-33), December 2021
(MECS2018)
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- Industrial Heat Demand

* Across the entire U.S. industrial sector, 71% of heat requirements (8,965.8 TBtu)
are for temperatures below 500°C.

Total
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3 Data compiled from “Manufacturing Thermal Energy Use in 2014.” for U.S. 2014, from “Quantification of the Data from Decarbonizing Low-Temperature Industrial Heat in the U.S. (Oct. 2022), Energy Innovation
European industrial heat demand by branch and temperature level” for the European Union (EU), and from Policy & Technology LLC © and Manufacturing Energy and Carbon Footprints (2018 MECS) are
“Decarbonizing Low-Temperature Industrial Heat in the U.S.” and “Manufacturing Energy and Carbon combined. It is assumed that industrial heat demand by temperature ranges has not changed significantly
Footprints (2018 MECS)” for U.S. 2018. between 2018 and 2021.
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- Advanced Nuclear Energy Pathways by Sector

Future Nuclear Energy Currencies are Chemical Feedstocks (Syngas, FT liquids, Methanol, H,)
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- Ideal IES system is involved with all aspects of energy use
ENERGY MANAGEMENT
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Thermal Energy Management
Thermal management solutions for better thermal efficiency and security

---- s
........ Power Conversion CycleTs4

System Building

Standby Diesels &
Fire Water

Based on Natrium TerraPower Rendering

Importance
Thermal energy storage (TES) enables nuclear power plants to provide flexible power generation,
meeting the variable demands.

Decoupling the reactor from the power cycle and integrating TES allows for unrestricted heat diversion
and higher efficiency.

TES enhances operational reliability and adaptability to market conditions, ensuring minimal impact on
reactor parameters during rapid power changes.

Recent work
Thermal energy storage technologies mapping with advanced nuclear reactors
ECM: https://doi.org/10.1016/j.enconman.2022.115872

Figure-of-Merit studies on thermal energy storage integrations with light water reactors
NT: https://doi.org/10.1080/00295450.2021.1906473

Concrete thermal energy storage system configurations for continuous power production
JES: https://doi.org/10.1016/j.est.2022.104387

Design and optimization of flexible decoupled HTGR with thermal energy storage
ECM: https://doi.org/10.1016/j.enconman.2024.119098
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Thermal Energy Management
Thermal management solutions for better thermal efficiency and security
Proposed nuclear-based system configuration for the energy

park (Left) and Electricity balance after integrating thermal —Heat Demand Electricity Demand
energy storage (TES) and additional H, storage (Right).
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- Dynamic System Modeling and Control (HYBRID on Github)

Real-time system analysis with digital twin of system
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Importance

Dynamic modeling and control enable seamless
integration of various energy sources and systems,
ensuring coordinated and efficient operation.

Real-time analysis and control help identify and
mitigate potential disruptions, enhancing the reliability
and resilience of energy systems against unforeseen
events and fluctuations.

Recent work:

Development of NuScale reactor module in Modelica
NT: https://doi.org/10.1080/00295450.2020.1781497

Capabilities

Dynamic modeling of
nuclear reactor and power
conversion cycle system

Rule-based control logics

Multiple system model
integration and coupling

Development of Thermal-Energy Distribution System (TEDS) in Modelica

Energies: https://doi.org/10.3390/en13236353

Controls for integrated energy storage system in energy arbitrage configuration
Applied Energy: https://doi.org/10.1016/j.apenergy.2022.118800

Nuclear-integrated energy system modeling for the remote microgrid

Energies: https://doi.org/10.3390/en17235826
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Dynamic System Modeling and Control (HYBRID on Github)

Real-time system analysis with digital twin of system

Fully-integrated microgrid system model
Prismatic high temperature gas-cooled reactor, thermal energy storage,
power conversion cycle, and heat application system

= Each subsystem in the integrated energy
por system is modeled in a modular manner.
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6 Saeed, Rami M., et al. Multilevel analysis, design, and modeling of coupling advanced nuclear reactors and thermal energy storage in an integrated energy system. No. INL/RPT-22-69214-

Rev000. Idaho National Laboratory (INL), Idaho Falls, ID (United States), 2022.
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IES Experimental System Design

Improving the design, scaling, and model validation and verification of thermal-hydraulic loops

Schematic of the Nuclear-TES Energy Island 2-D sketch of the system Operational concept of the
Nuclear-TES Energy Island
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s Condition Nominal Value
: : Storage System Discharge System : °
5 Charge System x TES loop (e, Controllable Hot molten salt temp. 420°C
i Gas-to-molten-salt :: (hot and cold Load) :
heat exchanger i L 04 molten- Heat rejection Hot molten salt pres. 120-400 kPa
(reactor heat) salt loop) i (air-cooled radiator)
& .............. N R — - g ; Cold molten salt temp. 267°C
Charge System Storage System Discharge System f —— Cold molten salt pres. 120-400 kPa
Gas-to-molten-salt TES loop i (ie., Controllable Load) ) .
heat exchanger i: (hotand cold tanks and : : Heat rejection Compressed hot gas maximum temp.  750°C

(reactor heat) molten-salt loop) i1 (air-cooled radiator) .
i i Compressed hot gas maximum pres. 7000 kPa

8 Saeed, Rami M., and Terry James Morton. Advanced Reactors Integrated Energy System-Thermal Energy Storage Island Design. No. INL/RPT-23-74798-Rev000. Idaho National Laboratory
(INL), Idaho Falls, ID (United States), 2023.
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Thank you!

Rami Saeed
Rami.Saeed@inl.gov

IDAHO NATIONAL LABORATORY



	Slide 1
	Slide 2: Introduction Energy Demand and Supply
	Slide 3: Share of Nuclear Energy
	Slide 4: Expected US Energy Demand Growth 
	Slide 5: Electric potential: Datacenter Power Hunger
	Slide 6: Variable Renewable Generators in Electricity Markets Need for grid stability and reliability, arbitrage potential 
	Slide 7: Thermal potential: Energy use across all U.S. manufacturing 
	Slide 8: Industrial Heat Demand
	Slide 9: Advanced Nuclear Energy Pathways by Sector
	Slide 10: Ideal IES system is involved with all aspects of energy use
	Slide 11: Thermal Energy Management Thermal management solutions for better thermal efficiency and security  
	Slide 12: Thermal Energy Management Thermal management solutions for better thermal efficiency and security 
	Slide 13: Dynamic System Modeling and Control (HYBRID on Github) Real-time system analysis with digital twin of system  
	Slide 14: Dynamic System Modeling and Control (HYBRID on Github) Real-time system analysis with digital twin of system  
	Slide 15: IES Experimental System Design Improving the design, scaling, and model validation and verification of thermal-hydraulic loops  
	Slide 16:   Thank you!  Rami Saeed Rami.Saeed@inl.gov 

